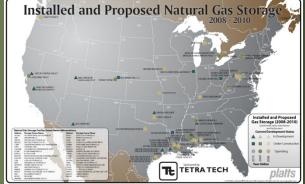

Arizona Natural Gas Storage Arizona Corporation Commission March 2, 2011

Introduction

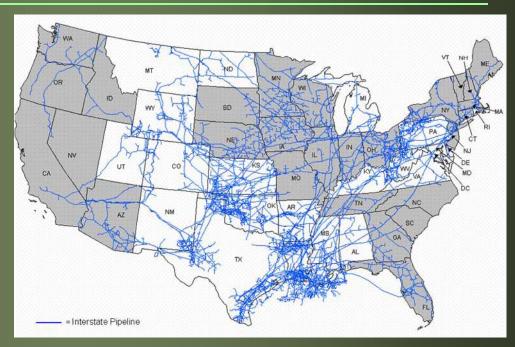
- Dan Pastor Tetra Tech, Inc.
 - Facility Permitting
 - Environmental Compliance
 - Water Management
 - Geotechnical Engineering




Experience with NGS

What is Underground Gas Storage?

- Takes in natural gas from pipeline systems and holds it until it's needed
- Stores the gas safely in salt caverns, deep underground
- Widely used in all areas of the country



Why is Gas Storage Needed?

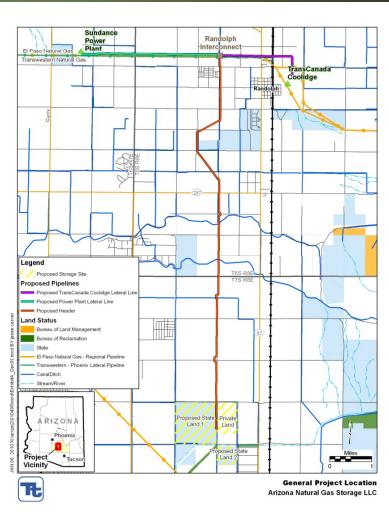
- Reliability, flexibility, security
- Provides pressure and supply to meet peak demands
- Helps back up intermittent solar, wind, and other renewables
- Optimizes the existing natural gas infrastructure

*States shown as grey are at least 85% dependent on the interstate pipeline network for their natural gas supply Source: U.S. Energy Information Administration (EIA)

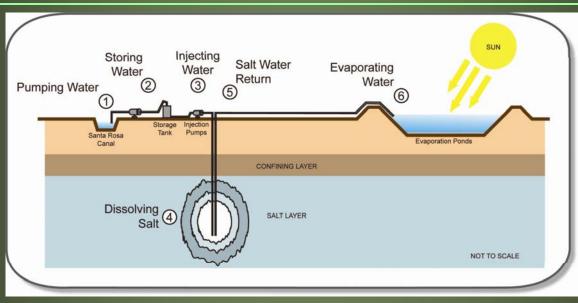
Project Location

Arizona Natural Gas Storage Project

- Storage Site
 - Storage Caverns
 - Brine Ponds
 - Surface Facilities
 - Water Intake
 - Pipelines



Arizona Natural Gas Storage Project


Pipelines

- 9.5 Mile Header (dual 24" pipelines)
- 2.3 Mile Lateral to TransCanada Coolidge (16" line)
- 3.3 Mile Lateral to Sundance Power Plant (12" line)

How are the Salt Caverns Created?

- 1. Water from Irrigation Canal (no additional chemicals)
- 2. Circulated Down Well Casing
- 3. Dissolves Salt
- 4. Salt Water Return
- 5. Solar Evaporation Ponds

Why use Evaporation Ponds?

- Deep Injection is not feasible
 - No Suitable Injection Zone below Salt
 - Injection Above Salt
 - Risk Cavern Integrity
 - Risk of Impacts to Fresh Water Aquifer

Federally Required Permits

- Federal Energy Regulatory Commission (FERC)
 - Certificate of Public Convenience and Necessity
- US Environmental Protection Agency (EPA)
 - Underground Injection Control (UIC) Class III Permit
- US Fish and Wildlife Service
 - Threatened and Endangered Species Consultation
- Native American Tribes
 - National Historic Preservation Act Consultation

State Required Permits

- Arizona Department of Environmental Quality
 - Aquifer Protection Permit (APP)
- Arizona Department of Water Resources
 - Dam Safety Permit
- Arizona Oil and Gas Conservation Commission
 - Permits for Drilling, UIC
 - Gas Storage Operations
- Pinal County Air Quality Control District
 - Industrial Source Permit

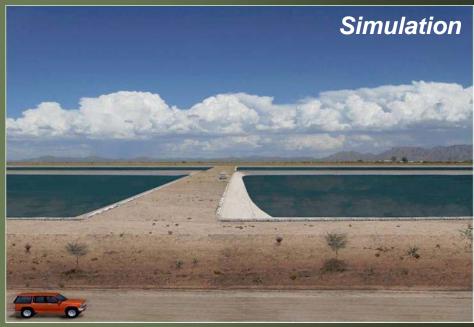
State Required Permits (cont.)

- Arizona State Land Department (ASLD)
 - Lease and Easement Agreement
- State Historical Preservation Office (SHPO)
 - National Historic Preservation Act Cultural Resources
 Consultations and Clearances
- Arizona Game & Fish Department
 - Project Evaluation
- Central Arizona Project (CAP)
 - Canal Crossing Permit

Questions

Extra Slides

Photographic Simulations



LaPalma & Arica Rd, Looking South

Photographic Simulations

LaPalma, Looking East (Simulation is looking down from approximately 50 Feet above existing condition)